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SELF-EQUILIBRATED STRESS FIELDS IN A CONTINUOUS MEDIUM

UDC 539.37V. P. Myasnikov,∗ M. A. Guzeev and A. A. Ushakov

It is proved that the solutions of the static equations of a continuous medium constructed in terms
of a stress function are self-equilibrated. From a mathematical point of view, these functions can
be treated as the connectivity coefficients of the intrinsic geometry of the medium. It is shown that
from a physical point of view, the existence of self-equilibrated stress fields is due to a nonuniform
entropy distribution in the medium. As an example, for a circle in polar coordinates and a cylindrical
sample, a self-equilibrated stress field and an elastic field compensating for its surface component are
constructed and it is shown how to write the equation for the intrinsic geometrical characteristics.
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Introduction. In the mechanics of continuous media, it is well known that for specified motion of a
continuous medium and specified distributions of surface and mass forces, the stress field in the medium is not
uniquely determined [1]. This result is based on the fact that the equations of mechanical equilibrium for a
continuous medium in the absence of external forces

∂σij

∂xj
= 0, σijnj

∣∣∣
∂V

= 0 (1)

can have nontrivial solutions. In (1), σij are the stress-tensor components and ni are the coordinates of the normal
vector to the boundary; summation is performed over repeating subscripts. The nontrivial solution of system (1)
constructed in [1] for a unit cube has the form

σ11 = cos πx1 cos πx2 + cos πx2, σ22 = cos πx1 cos πx2 + cos πx1,

σ12 = σ21 = sinπx1 sinπx2, σ33 = σ13 = σ31 = σ32 = σ23 = 0.
(2)

Nevertheless, the nonuniqueness of the stress field turns out to be useful for correcting the equations of state
of continuous media. In particular, such correction allowed Godunov and Romenskii [1, § 31], without changing the
smooth solutions of elasticity theory, to change the equation of state of the nonlinear theory of elasticity so that it
became strictly convex and to bring the system of conservation laws to a symmetric hyperbolic form. We note that
the equation of state corresponding to solution (2) is not strictly convex. Indeed, let σij be expressed in terms of
the strain tensor εij according to Murnaghan’s formulas [1]:

σij = ∂W/∂εij . (3)

We introduce the strain tensor εij and the elastic potential W in the form

εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, ui =

∂Φ
∂xi

,

Φ = −(cos πx1 cos πx2 + cos πx1 + cos πx2)/π2;

W = (ε11 + ε22)2/2− (ε2
11 + ε2

22 + 2ε2
12) = ε11ε22 − ε2

12. (4)
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Substituting (4) into (3), we obtain (2). In this case, W is not a strictly convex function εij since the matrix of
the second derivatives ∂2W/∂εij ∂εpq is not strictly positive. Interest in the nontrivial solutions of system (1) is
motivated by the necessity of solving technological problems. The fact is that technologists are well aware of the
existence of residual stresses in articles from various materials [2]. An example are welds. From the experimental
data of [2] it follows that weld stresses can have values comparable to stresses induced by external action. The
bodies in this case are in mechanical and thermal equilibrium. The existence of residual stresses implies that in
the equilibrium equations (1), the stresses σij inside the body are not equal to zero and for an arbitrary element of
volume ω inside the body, the following integral equilibrium conditions are satisfied:∫

∂ω

Xi dS =
∫
∂ω

σijnj dS = 0 (i, j = 1, 2, 3); (5)

Mij =
∫
∂ω

(σikxj − σjkxi)nk dS +
∫
ω

(σji − σij) dV = 0. (6)

The nontrivial solutions of system (1) that satisfy relations (5) and (6) are called self-equilibrated. In the present
paper, we prove that the nontrivial solutions of system (1) constructed in a previous study [3] are self-equilibrated.
Solution (2) is an example of such a self-equilibrated stress field. For the case of small strains of a continuous medium
and an isotropic intrinsic metric, it is shown that the self-equilibrated stresses are determined by a nonuniform
entropy distribution in the material. For a circle in polar coordinates and a cylindrical sample, possible versions of
constructing equations for the intrinsic metric are given.

Self-Equilibration Property. In [3], the nontrivial solutions of Eqs. (1) are written in terms of the stress
function Γqm,p as

σij = 2σ0l
2εipqεjmk

∂Γqm,p

∂xk
, (7)

where εipq is the Levi-Civita symbol. The constants σ0 and l have the dimensions of stress and length, respectively.
Expressions (7) satisfy Eqs. (1) identically.

We check that conditions (5) and (6) are satisfied for a field σij . The validity of condition (5) is obvious
since after substitution of (7) into (5), the obtained integrand coincides with the normal component of the curl of
the tensor field, and the closed-surface integral of the component is known to be equal to zero:∫

∂ω

dS σijnj = −2σ0l
2

∫
∂ω

dS njεjkm
∂

∂xk
Γqm,pεipq = 0.

Generally, solution (7) does not guarantee symmetry of the stress tensor, and the proof of condition (6) is a
separate problem. Using (7), we convert the volume integral in (6) to the following integral over the boundary:∫

ω

dV (σji − σij) = 2σ0l
2

∫
∂ω

dS nk(εjpqεimk − εipqεjmk)Γqm,p. (8)

Since ∫
∂ω

dS σiknkxj = 2σ0l
2

∫
∂ω

dS nkεipqεkml
∂

∂xl
(Γqm,pxj)− 2σ0l

2

∫
∂ω

dS nkεipqεkmjΓqm,p,

the surface integral in (6) can be written as∫
∂ω

dS (σikxj − σjkxi)nk = 2σ0l
2

∫
∂ω

εipqdS nk

[
εkml

∂

∂xl
(Γqm,pxj)− εjpqεkml

∂

∂xl
(Γqm,pxi)

]

+ 2σ0l
2

∫
∂ω

dS nk(εipqεjmk − εjpqεimk)Γqm,p. (9)

Equations (8) and (9) imply

Mij =
∫
∂ω

(σikxj − σjkxi)nk dS +
∫
ω

(σji − σij) dV = 2σ0l
2

∫
∂ω

dS nkεkml
∂

∂xl

[
εipq(Γqm,pxj)− εjpq(Γqm,pxi)

]
.
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The integrand in the surface integral coincides with the normal component of the curl of the tensor field and the
closed-surface integral of this component is equal to zero.

Generally, the pointwise boundary conditions (1) used in elasticity theory are not satisfied for the stress
field (7): σijnj

∣∣∣
∂V

6= 0. By virtue of the linearity of the equilibrium equations, it was proposed [3] to introduce an
elastic stress field πij = πji, so that

∂πij

∂xj
= 0, πijnj

∣∣∣
∂V

= −σijnj

∣∣∣
∂V

.

The stress field
Tij = πij + σij (10)

satisfies the equilibrium equations (1) and satisfies the condition of absence of external forces on the field surface
in a pointwise sense:

∂Tij

∂xj
= 0, Tijnj

∣∣∣
∂V

= 0. (11)

Thus, in the equilibrium state, the stress field Tij can be written as the sum of the self-equilibrated σij and elastic πij

fields.
Relationship of the Self-Equilibrated Solution with the Classical Theory of Elasticity. In physical

theories of strength and plasticity, nonzero stresses in equilibrium occur in models that take into account crystal
structure defects in materials (see, for example, [4, Sec. IV]). In the 1950s, an analysis of such physical models led
Kondo [5] and Bilby [6] to the conclusion that stresses must be described using geometrical objects forbidden by the
classical theory of elasticity. Godunov, analyzing the necessity of generalizing classical theory, pointed out that the
identification of changes in the intrinsic metric of a material gij , which governs changes in its internal energy, with
the corresponding body shape changes in the Euclidean metric of an external observer is an additional hypothesis
postulated in classical theory.

In view of the necessity of introducing non-Euclidean objects to describe defects, it is proposed [3] to
treat Γqm,p in (7) as connectivity objects on the manifold generated by the internal defect structure of the material.
The reserve of the functions Γqm,p is large enough, and a decrease in it is related to the hypothesis on the geometrical
structure of the manifold considered. In particular, if the manifold is Riemannian, then Γqm,p are expressed in terms
of the metric under by the Christoffel formulas [7]

Γij,k =
1
2

(∂gik

∂xj
+

∂gjk

∂xi
− ∂gij

∂xk

)
.

Then the self-equilibrated stresses (7) are completely defined by the metric of the manifold:

σij = 2σ0l
2εipqεjmn

∂2gpm

∂xn∂xq
. (12)

Let the intrinsic metric be diagonal gij = δijg. Using the identity

εipqεjpn = δijδqn − δinδqj ,

we can write (12) as
σij = 2σ0l

2
(
δij ∆g − ∂2g

∂xi∂xj

)
(13)

(∆ is the Laplacian). From (3) and (4), it follows that σij in (2) is similar in structure to (13):

σij = δij ∆Φ− ∂2Φ
∂xi∂xj

(Φ = 2σ0l
2g). Consequently, solution (2) constructed in [1] has the self-equilibration property, and its intrinsic

metric is diagonal.
Let us consider small strains of a continuous medium for an isothermal process. In this case, the elastic

stress tensor πij is related to the elastic strain tensor εij by Hooke’s law:

πij = λδijεkk + 2µεij . (14)

Here λ and µ are Lamé’s parameters. The total field Tij is defined by relation (10), which, with allowance for (13)
and (14), is written as
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Tij = δij(λεkk + 2σ0l
2∆g) + 2µεij − 2σ0l

2 ∂2g

∂xi∂xj
. (15)

We rearrange relation (15). For this, we write

2µεij − 2σ0l
2 ∂2g

∂xi∂xj
= 2µ

[1
2

∂

∂xj

(
ui −

σ0l
2

µ

∂g

∂xi

)
+

1
2

∂

∂xi

(
uj −

σ0l
2

µ

∂g

∂xj

)]
.

Introducing the functions

Ui = ui −
σ0l

2

µ

∂g

∂xi
, (16)

we have

2µεij − 2σ0l
2 ∂2g

∂xi∂xj
= 2µ

1
2

(∂Ui

∂xj
+

∂Uj

∂xi

)
= 2µEij . (17)

Substituting relations (16) and (17) into (15), we obtain

Tij = δij

[
λ

∂Uk

∂xk
+ σ0l

2 λ + 2µ

µ
∆g

]
+ 2µEij .

We introduce the first invariant E1 of the tensor Eij , the scalar function sc − s0, and the phenomenological param-
eter η, assuming that

E1 =
∂Uk

∂xk
, σ0l

2 λ + 2µ

µ
∆g = −η(sc − s0). (18)

This allows expression (15) for Tij to be written as

Tij = δij [λE1 − η(sc − s0)] + 2µEij . (19)

Formula (19) suggests a relationship with classical theory and reveals the physical meaning of the intrinsic
metric. Since we consider small strains of a continuous medium, in the internal energy function U , we restrict
ourselves to the first and second terms of the expansion in powers of the strain tensor Eij and the deviation of the
entropy s from a certain fixed value s0. With accuracy up to an additive constant, the energy is written as [1, p. 63]

ρ0U = ρ0T (s− s0) + λ(Ekk)2/2 + µEijEij − η(s− s0)Ekk + ξρ0(s− s0)2/2, (20)

where ρ0 is the density of the medium in the initial state, T is the temperature, and ξ is a phenomenological
parameter. The equation of state is determined by Murnaghan’s relations [1]

Tij = ρ0
∂U

∂Eij
. (21)

Substituting (20) into (21), we obtain the stress tensor

Tij = δij [λEkk − η(s− s0)] + 2µEij . (22)

From (19) and (22) it follows that the scalar function introduced above sc coincides with the entropy of the
medium s = sc. The meaning of this result is as follows. We consider an ideal crystal in an equilibrium state.
From a physical point of view, an ideal crystal is a lattice whose sites are occupied by atoms; the lattice has a
particular symmetry group and there are no defects in an ideal crystal. In an isolated system, defects can form, for
example, when atoms lose unstable equilibrium as a result of a fluctuation. Such a transition leads to a change in the
configuration of the crystal lattice, its rearrangement, and formation of a more stable state of equilibrium, resulting
in an increase in the entropy. The new initial state differs from the original by the vector ∇g (16); in this case, g is
the solution of Poisson’s equation (18), whose right side is determined by the configurational contribution sc into
the entropy.
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Let the entropy be fixed, i.e., sc = s0. Then,

∆g = 0. (23)

From (16) and (23), we obtain div U = div u. The quantities div U and div u are the first invariants of the tensors

εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, Eij =

1
2

(∂Ui

∂xj
+

∂Uj

∂xi

)
,

respectively. The invariant quantity εkk = Ekk defines (in a linear approximation) the density of the medium
ρ = ρ0(1 − εkk). In physics, gradient transformations similar to (16) arise, for example, in determining the elec-
tromagnetic field in terms of potentials in field theory [8]. In this case, the electromagnetic field is invariant under
gradient (invariance) transformations and the potentials are not uniquely determined. Because of the nonunique
determination of the potentials, they can be chosen so that they satisfy one arbitrary condition — the calibration
condition. By analogy with field theory, one can say that condition (23) fixes the choice of the function g (i.e., the
choice of calibration) with introduction of the displacement vector for points of the continuous medium and the
invariant quantity is the density of the medium ρ.

Self-Equilibrated Stress Field in a Circle. We assume that the intrinsic metric gij is diagonal: gij =
δijg. Then, in polar coordinates, the components of the self-equilibrated field σij (13) (with accuracy up to the
normalization factor) are equal to [9]

σrr =
1
r

∂g

∂r
+

1
r2

∂2g

∂ϕ2
, σϕϕ =

∂2g

∂r2
, σrϕ = − ∂

∂r

(1
r

∂g

∂ϕ

)
. (24)

The description of the structure of the stress field remains unclosed because a method for constructing the function g

is not indicated.
Let us find out in what form it is possible to write the equation for g. As shown above, g is a characteristic

of the internal structure of the material and is determined by the configurational entropy sc − s0 [see (18)]. For
a uniform entropy distribution, i.e., for sc = s0, Eq. (23) is satisfied. A simple modification of this equation for
sc 6= s0 arises from perturbation of its right side:

∆g = −k2g. (25)

The quantity k is a parameter of the model.
In the polar coordinates, the solution of Eq. (25) is given by the formula g = Jn(kr) cos nϕ, where Jn is a

cylindrical function of the first kind. From this and from (24), we obtain the components of the self-equilibrated
stress field:

σrr =
1
r2

(
r

dJn

dr
− n2Jn

)
cos nϕ, σrϕ = n

d

dr

(Jn

r

)
sinnϕ,

σϕϕ = − 1
r2

(
r

dJn

dr
− n2Jn + k2r2Jn

)
cos nϕ.

(26)

We consider the case n > 2. In the polar coordinates, the elastic field satisfies the equations

∂πrr

∂r
+

1
r

∂πrϕ

∂ϕ
+

πrr − πϕϕ

r
= 0,

∂πrϕ

∂r
+

1
r

∂πϕϕ

∂ϕ
+

2πrϕ

r
= 0. (27)

We first construct a solution of Eqs. (27), and then, using this field, calculate the corresponding displacements. We
write a particular solution of system (27) in the form

πrr = Arn−2 cos nϕ, πϕϕ = −Arn−2 cos nϕ, πrϕ = −Arn−2 sinnϕ. (28)

The components of the elastic strain tensor εij are related to the stresses (28) by Hooke’s law (14). From (28) it
follows that πrr + πϕϕ = 0; then, the first invariant of the elastic strain tensor is equal to zero: ε = (πrr + πϕϕ)/(λ
+ 2µ) = 0.

Let us calculate the displacement fields ur and uϕ:

ur =
A

2µλ(n− 1)
rn−1 cos nϕ, uϕ = − A

2µλ(n− 1)
rn−1 sinnϕ. (29)
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The total stresses (10) are defined by the formulas

Trr = σrr + πrr, Tϕϕ = σϕϕ + πϕϕ, Trϕ = σrϕ + πrϕ.

The boundary conditions (11) lead to the following equations:

1
r2

(
r

dJn

dr
− n2Jn

)
+ Arn−2

∣∣∣
r=R

= 0,
n

r2

(
r

dJn

dr
− Jn

)
−Arn−2

∣∣∣
r=R

= 0.

Eliminating the coefficient A, we have

dJn

dr
− n

r
Jn

∣∣∣
r=R

= 0. (30)

Using the recursion formulas for cylindrical functions [10], we rewrite Eq. (30) as

Jn+1

∣∣∣
r=R

= 0. (31)

For n = 1, formulas (29) have a singularity. It should be noted that after substitution of (26) for n = 1 into
the boundary conditions (11), we obtain

r
dJ1

dr
− J1

∣∣∣
r=R

= 0,
d

dr

(J1

r

)∣∣∣
r=R

= 0. (32)

Obviously, for r 6= 0, the conditions in (32) are equivalent. Then, using the recursion formulas for cylindrical
functions [10], we write (32) as

J2

∣∣∣
r=R

= 0. (33)

Relation (33) is a special case of (31) for n = 1. Thus, for n = 1, the field (26) satisfies the boundary conditions (11)
in a pointwise sense; therefore, the elastic field is equal to zero. However, as noted above, the equation of state
corresponding to this solution is not strictly convex.

Self-Equilibrated Stress Field for a Cylindrical Sample. We consider a cylindrical sample which is
in equilibrium. By analogy with the plane case, we assume that the first invariant of the strain tensor is equal to
zero. The equilibrium equations are written in displacements as follows [11]:

∆ur −
ur

r2
− 2

r2

∂uϕ

∂ϕ
= 0, ∆uϕ −

uϕ

r2
+

2
r2

∂ur

∂ϕ
= 0, ∆uz = 0. (34)

The solution for the displacement vector components is sought in the form

ur = u(r) cos nϕ cos γz, uϕ = v(r) sinnϕ cos γz, uz = w(r) cos nϕ sin γz, (35)

where u(r), v(r), and w(r) are unknown functions, n is an integer, and the parameter γ is defined below. Substi-
tuting (35) into (34), we obtain the following equations for u = u(r), v = v(r), and w = w(r):

Lu− u

x2
− 2n

x2
v = 0, Lv − v

x2
− 2n

x2
u = 0, Lw = 0,

L =
d2

dx2
+

1
x

d

dx
− n2

x2
− 1, x = γr.

The solution of this system is written as

u =
A1

2
In+1(x) +

A2

2
In−1(x), v =

A1

2
In+1(x)− A2

2
In−1(x), w = A3In(x),

where In(x), In+1(x), and In−1(x) are real cylindrical functions of an imaginary argument. The vanishing condition
for the first strain invariant in terms of displacements yields constraints on the constants A1, A2, and A3 in the
form 2A3 + A1 + A2 = 0. The reference formulas relating the elastic stress tensor components to the displacement
vector components ur, uϕ, and uz are well known [11]; therefore, we shall give the final result for the elastic stress
field πij :

πrr = µγ
[
A1

(
In

(
1 +

2n2 + 2n

x2

)
− n + 1

x
In−1

)
+ A2

(
In +

n− 1
x

In−1

)]
cos nϕ cos γz,
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πϕϕ = µγ
[
A1

(n + 1
x

In−1 −
2n2 + 2n

x2
In

)
−A2

n− 1
x

In−1

]
cos nϕ cos γz,

πzz = −µγ(A1 + A2)In cos nϕ cos γz, (36)

πϕr =
µγ

2
A1

[
In

(
1 +

4n2 + 4n

x2

)
− 2n + 2

x
In−1

]
sinnϕ cos γz

− µγ

2
A2

(
In +

2n− 2
x

In−1

)
sinnϕ cos γz,

πrz = −µγ

2

[
A1

(
2In−1 −

3n

x
In

)
+ A2

(
2In−1 −

n

x
In

)]
cos nϕ sin γz,

πϕz = −µγ

2

[
A1

(
In−1 −

3n

x
In

)
−A2

(
In−1 +

n

x
In

)]
sinnϕ sin γz.

The self-equilibrated stress field is written as

σrr = frr(x) cos nϕ cos γz, σrϕ = frϕ(x) sinnϕ cos γz,

σϕϕ = fϕϕ(x) cos nϕ cos γz, σϕz = fϕz(x) sinnϕ sin γz, (37)

σzz = fzz(x) cos nϕ cos γz, σrz = frz(x) cos nϕ sin γz.

At the same time, the components of the self-equilibrated stress field are calculated in terms of the function g by
formulas (13), which, in cylindrical coordinates have the following form (with accuracy up to the normalization
factor):

σrr =
1
r

∂g

∂r
+

1
r2

∂2g

∂ϕ2
+

∂2g

∂z2
, σϕϕ =

∂2g

∂r2
+

∂2g

∂z2
, σzz =

∂2g

∂r2
+

1
r

∂g

∂r
+

1
r2

∂2g

∂ϕ2
,

σrϕ = − ∂

∂r

(1
r

∂g

∂ϕ

)
, σϕz = −1

r

∂2g

∂ϕ ∂z
, σrz = − ∂2g

∂r ∂z
.

(38)

Let the function g depend on the coordinates ϕ and z as follows:

g = G(x) cos nϕ cos γz. (39)

Substituting (39) into (38) and using (37), we obtain the following representation for the functions fij = fij(x) in
terms of the function G = G(x):

frr = γ2
( 1

x

dG

dx
− n2

x2
G−G

)
, frϕ = γ2n

d

dx

(G

x

)
, frz = γ2 dG

dx
,

fϕz = −γ2 n

x
G, fϕϕ = γ2

(d2G

dx2
−G

)
, fzz = γ2

(d2G

dx2
+

1
x

dG

dx
− n2

x2
G

)
.

(40)

Let us consider the boundary conditions for the components of the total stress field Tij . We write the
parameter γ as γ = mπ/h, where m is a natural number. Then, the boundary conditions for the components
Trz = σrz + πrz and Tϕz = σϕz + πϕz for z = ±h are satisfied identically. The boundary condition for Tzz|z=±h

= σzz + πzz|z=±h = 0 leads to the following equation for the function G:

d2G

dx2
+

1
x

dG

dx
− n2

x2
G =

µ

γ
(A1 + A2)In(x). (41)

The solution of Eq. (41) is found by the formula

G(x) = Cxn + µ(A1 + A2)In/γ. (42)
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Substituting (42) into (40) and using (37) to calculate the components of the field of self-equilibrated stresses, we
obtain

σrr = Cγ2xn
(n− n2

x2
− 1

)
+ µγ(A1 + A2)

[
In−1

1
x
− In

(
1 +

n2 + n

x2

)]
cos nϕ cos γz,

σϕϕ = Cγ2xn
(n2 − n

x2
− 1

)
+ µγ(A1 + A2)

(
In

n2 + n

x2
− 1

x
In−1

)
cos nϕ cos γz,

σzz = µγ(A1 + A2)In cos nϕ cos γz, (43)

σϕr = Cγ2n(n− 1)xn−2 + µγ(A1 + A2)
(
In−1

n

x
− In

n2 + n

x2

)
sinnϕ cos γz,

σrz = Cγ2nxn−1 + µγ(A1 + A2)
(
In−1 − In

n

x

)
cos nϕ sin γz,

σϕz = −Cγ2nxn−1 + µγ(A1 + A2)
n

x
In sinnϕ sin γz.

Let us consider the boundary conditions on the surface of the cylinder

σrr + πrr

∣∣∣
x=γR

= 0, σrϕ + πrϕ

∣∣∣
x=γR

= 0, σrz + πrz

∣∣∣
x=γR

= 0.

Substituting the expressions for the stress components from (43) and (36) into the above formulas, we obtain the
following system of linear algebraic equations for A1, A2, and C:

Cγxn((n− n2)/x2 − 1)/µ + A1Ψ(x) + A2Θ(x)
∣∣∣
x=γR

= 0,

2Cγxn−2n(n− 1)/µ + A1Ψ1(x) + A2Θ1(x)
∣∣∣
x=γR

= 0, (44)

2Cγxn−1n/µ + A1Ψ2(x) + A2Θ2(x)
∣∣∣
x=γR

= 0.

Here

Ψ(x) = −Θ(x) = −In−1n/x + Inn(n + 1)/x2,

Ψ1(x) = −Θ1(x) = −2In−1/x + In(1 + (2n2 + 2n)/x2),

Ψ2(x) = −Θ2(x) = Inn/x.

A nontrivial solution of system (44) exists provided that the determinant of the system is equal to zero. This
condition is satisfied since in the determinant, the second and third columns differ only in sign.

Therefore, in constructing the stress field for a cylindrical sample, it is necessary to specify the parameters C,
A1, and γ (or m). Values of these parameters depend on the conditions of material processing, and to determine
them, one needs to perform additional experiments [2].

Conclusions. The internal stresses field in a material is composed of a self-equilibrated stress field and an
elastic stress field, which compensates for the surface disequilibrium of the self-equilibrated stresses. The combined
effect of these stresses allows the sample to retain the specified shape. From a physical point of view, the existence
of nonzero self-equilibrated stress fields in a continuous medium is due to the presence of structural defects in the
material, whose description requires introducing an intrinsic metric tensor. Therefore, an analysis of dissipative
processes in materials based on non-Euclidean geometrical models considered previously [12–14] will allow one to
solve the problem of the structure of self-equilibrated stress fields in materials under processing treatment.

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-01134) Council
on grants from the President of the Russian Federation (Grant No. MD 362.2003.05).
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